| SNABSuite
    0.x
    Spiking Neural Architecture Benchmark Suite | 
Go to the source code of this file.
| Namespaces | |
| mnist_double_cnn | |
| Variables | |
| int | mnist_double_cnn.batch_size = 128 | 
| int | mnist_double_cnn.num_classes = 10 | 
| int | mnist_double_cnn.epochs = 100 | 
| mnist_double_cnn.img_rows | |
| mnist_double_cnn.img_cols | |
| mnist_double_cnn.x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols) | |
| mnist_double_cnn.y_test = keras.utils.to_categorical(y_test, num_classes) | |
| mnist_double_cnn.x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols) | |
| tuple | mnist_double_cnn.input_shape = (1, img_rows, img_cols) | 
| mnist_double_cnn.y_train = keras.utils.to_categorical(y_train, num_classes) | |
| string | mnist_double_cnn.kernel_init = 'he_uniform' | 
| mnist_double_cnn.model = Sequential() | |
| mnist_double_cnn.loss | |
| mnist_double_cnn.optimizer | |
| mnist_double_cnn.metrics | |
| mnist_double_cnn.verbose | |
| mnist_double_cnn.validation_data | |
| mnist_double_cnn.score = model.evaluate(x_test, y_test, verbose=0) | |
| mnist_double_cnn.json_string = model.to_json() | |
 1.8.11
 1.8.11