SNABSuite  0.x
Spiking Neural Architecture Benchmark Suite
Class List
Here are the classes, structs, unions and interfaces with brief descriptions:
[detail level 12]
 Nconvert_weights
 CWeightClip
 NMNIST
 CCatHingeCategorical hinge loss. Use if weights are restricted to be >0
 CMLPThe standard densely connected multilayer Perceptron. Template arguments provide the loss function, the activation function of neurons (experimental) and a possible constraint for the weights
 CMLPBaseBase class for Multi Layer Networks (–> currently Perceptron only). Allows us to use polymorphism with templated class
 CMSERoot Mean Squared Error
 CNoConstraintConstraint for weights in neural network: No constraint
 CPositiveLimitedWeights
 CPositiveWeightsConstraint for weights in neural network: Only weights >0
 CReLUActivationFunction ReLU: Rectified Linear Unit
 Nmnist_helper
 CCONVOLUTION_LAYER
 CPOOLING_LAYER
 NSNAB
 CBenchmarkExec
 CGroupMaxFreqToGroup
 CGroupMaxFreqToGroupAllToAll
 CGroupMaxFreqToGroupProb
 CLateralInhibWTA
 CMaxInputAllToAll
 CMaxInputFixedInConnector
 CMaxInputFixedOutConnector
 CMaxInputOneToOne
 CMirrorInhibWTA
 CMNIST_BASE
 CMnistCNNPool
 CMnistDiehl
 CMnistDoubleCNN
 CMnistITL
 CMnistITLLastLayer
 CMnistNAS129
 CMnistNAS63
 CMnistNAStop
 CMnistSpikey
 COutputFrequencyMultipleNeurons
 COutputFrequencySingleNeuron
 COutputFrequencySingleNeuron2
 CParameterSweep
 CRateBasedWeightDependentActivation
 CRefractoryPeriod
 CSetupTimeAllToAll
 CSetupTimeOneToOne
 CSetupTimeRandom
 CSimpleWTA
 CSingleMaxFreqToGroup
 CSNABBaseVirtual Base class for SNABs(Benchmarks). All SNABs should have seperate building of networks, execution and an evaluation tasks
 CUtilitiesCollection of usefull Utilities not directly related to spiking networks
 CWeightDependentActivation