SNABSuite
0.x
Spiking Neural Architecture Benchmark Suite
|
▼Nconvert_weights | |
CWeightClip | |
▼NMNIST | |
CCatHinge | Categorical hinge loss. Use if weights are restricted to be >0 |
CMLP | The standard densely connected multilayer Perceptron. Template arguments provide the loss function, the activation function of neurons (experimental) and a possible constraint for the weights |
CMLPBase | Base class for Multi Layer Networks (–> currently Perceptron only). Allows us to use polymorphism with templated class |
CMSE | Root Mean Squared Error |
CNoConstraint | Constraint for weights in neural network: No constraint |
CPositiveLimitedWeights | |
CPositiveWeights | Constraint for weights in neural network: Only weights >0 |
CReLU | ActivationFunction ReLU: Rectified Linear Unit |
▼Nmnist_helper | |
CCONVOLUTION_LAYER | |
CPOOLING_LAYER | |
▼NSNAB | |
CBenchmarkExec | |
CGroupMaxFreqToGroup | |
CGroupMaxFreqToGroupAllToAll | |
CGroupMaxFreqToGroupProb | |
CLateralInhibWTA | |
CMaxInputAllToAll | |
CMaxInputFixedInConnector | |
CMaxInputFixedOutConnector | |
CMaxInputOneToOne | |
CMirrorInhibWTA | |
CMNIST_BASE | |
CMnistCNNPool | |
CMnistDiehl | |
CMnistDoubleCNN | |
CMnistITL | |
CMnistITLLastLayer | |
CMnistNAS129 | |
CMnistNAS63 | |
CMnistNAStop | |
CMnistSpikey | |
COutputFrequencyMultipleNeurons | |
COutputFrequencySingleNeuron | |
COutputFrequencySingleNeuron2 | |
CParameterSweep | |
CRateBasedWeightDependentActivation | |
CRefractoryPeriod | |
CSetupTimeAllToAll | |
CSetupTimeOneToOne | |
CSetupTimeRandom | |
CSimpleWTA | |
CSingleMaxFreqToGroup | |
CSNABBase | Virtual Base class for SNABs(Benchmarks). All SNABs should have seperate building of networks, execution and an evaluation tasks |
CUtilities | Collection of usefull Utilities not directly related to spiking networks |
CWeightDependentActivation |