SNABSuite  0.x
Spiking Neural Architecture Benchmark Suite
Variables
mnist_dnn Namespace Reference

Variables

int batch_size = 128
 
int num_classes = 10
 
int epochs = 25
 
 x_test = x_test.reshape(10000, 784)
 
 y_test = keras.utils.to_categorical(y_test, num_classes)
 
 x_train = x_train.reshape(60000, 784)
 
 y_train = keras.utils.to_categorical(y_train, num_classes)
 
float l2 = 0.0001
 
 model = Sequential()
 
 loss
 
 optimizer
 
 metrics
 
 history
 
 score = model.evaluate(x_test, y_test, verbose=0)
 
 include_optimizer
 
 json_string = model.to_json()
 

Detailed Description

Trains a simple deep NN on the MNIST dataset.

Gets to 98.40% test accuracy after 20 epochs
(there is *a lot* of margin for parameter tuning).
2 seconds per epoch on a K520 GPU.

Variable Documentation

int mnist_dnn.batch_size = 128

Definition at line 21 of file mnist_dnn.py.

int mnist_dnn.epochs = 25

Definition at line 23 of file mnist_dnn.py.

mnist_dnn.history
Initial value:
1 = model.fit(x_train, y_train,
2  batch_size=batch_size,
3  epochs=epochs,
4  verbose=1,
5  validation_data=(x_test, y_test))

Definition at line 57 of file mnist_dnn.py.

mnist_dnn.include_optimizer

Definition at line 67 of file mnist_dnn.py.

mnist_dnn.json_string = model.to_json()

Definition at line 69 of file mnist_dnn.py.

float mnist_dnn.l2 = 0.0001

Definition at line 40 of file mnist_dnn.py.

mnist_dnn.loss

Definition at line 51 of file mnist_dnn.py.

mnist_dnn.metrics

Definition at line 54 of file mnist_dnn.py.

mnist_dnn.model = Sequential()

Definition at line 41 of file mnist_dnn.py.

int mnist_dnn.num_classes = 10

Definition at line 22 of file mnist_dnn.py.

mnist_dnn.optimizer

Definition at line 53 of file mnist_dnn.py.

mnist_dnn.score = model.evaluate(x_test, y_test, verbose=0)

Definition at line 62 of file mnist_dnn.py.

mnist_dnn.x_test = x_test.reshape(10000, 784)

Definition at line 26 of file mnist_dnn.py.

mnist_dnn.x_train = x_train.reshape(60000, 784)

Definition at line 28 of file mnist_dnn.py.

mnist_dnn.y_test = keras.utils.to_categorical(y_test, num_classes)

Definition at line 26 of file mnist_dnn.py.

mnist_dnn.y_train = keras.utils.to_categorical(y_train, num_classes)

Definition at line 38 of file mnist_dnn.py.