21 Plots a histogram of a one dimensional list    25 parser = argparse.ArgumentParser(description=
'Plot a histogram')
    28 parser.add_argument(
"files", metavar=
"files", nargs=
'+', help=
"files to plot")
    31 parser.add_argument(
"-s", type=str, help=
"Name of the simulator", default=
"")
    32 parser.add_argument(
"-t", type=str, help=
"Title of the plot", default=
"")
    33 parser.add_argument(
"-b", help=
"Number of bins", default=
'auto')
    34 parser.add_argument(
"-n", help=
"Normed histogram",
    35                     default=
False, action=
"store_true")
    37 args = parser.parse_args()
    40 import matplotlib.pyplot 
as plt
    43 from dim_labels 
import *
    48     if bins 
is not "auto":
    49         plt.hist(data, bins=
int(bins), density=normed, color=
'black',
    50              histtype=
"bar", rwidth=0.95)
    52         plt.hist(data, density=normed, color=
'black',
    53              histtype=
"bar", rwidth=0.95)
    56         plt.ylabel(
"Probability")
    58         plt.ylabel(
"Frequency")
    63 if not os.path.exists(
"images"):
    66 for target_file 
in args.files:
    68     results = np.recfromtxt(target_file, delimiter=
',', loose=
True)
    69     xlabel = DIM_LABELS[target_file.split(
".csv")[0].split(
"_")[-1]]
    71         title = target_file.split(
"/")[-1].split(
"_")[0]
    75         title = title + 
" for " + SIMULATOR_LABELS[args.s]
    78     fig.savefig(target_file.split(
".csv")[0] + 
".pdf", format=
'pdf',
 
def histogram_plot(data, xlabel, title="", bins='auto', normed=False)