SNABSuite  0.x
Spiking Neural Architecture Benchmark Suite
MNIST::MLP< Loss, ActivationFunction, Constraint > Member List

This is the complete list of members for MNIST::MLP< Loss, ActivationFunction, Constraint >, including all inherited members.

accuracy(const std::vector< std::vector< std::vector< Real >>> &activations, const std::vector< size_t > &indices, const size_t start) overrideMNIST::MLP< Loss, ActivationFunction, Constraint >inlinevirtual
backward_path(const std::vector< size_t > &indices, const size_t start, const std::vector< std::vector< std::vector< Real >>> &activations, bool last_only=false) overrideMNIST::MLP< Loss, ActivationFunction, Constraint >inlinevirtual
backward_path_2(const std::vector< uint16_t > &labels, const std::vector< std::vector< std::vector< Real >>> &activations, bool last_only=false) overrideMNIST::MLP< Loss, ActivationFunction, Constraint >inlinevirtual
batchsize() const overrideMNIST::MLP< Loss, ActivationFunction, Constraint >inlinevirtual
conv_max_weight(size_t layer_id) const overrideMNIST::MLP< Loss, ActivationFunction, Constraint >inlinevirtual
correct(const uint16_t label, const std::vector< Real > &output) const overrideMNIST::MLP< Loss, ActivationFunction, Constraint >inlinevirtual
epochs() const overrideMNIST::MLP< Loss, ActivationFunction, Constraint >inlinevirtual
forward_path(const std::vector< size_t > &indices, const size_t start) const overrideMNIST::MLP< Loss, ActivationFunction, Constraint >inlinevirtual
forward_path_test() const overrideMNIST::MLP< Loss, ActivationFunction, Constraint >inlinevirtual
get_conv_layers() overrideMNIST::MLP< Loss, ActivationFunction, Constraint >inlinevirtual
get_layer_sizes() overrideMNIST::MLP< Loss, ActivationFunction, Constraint >inlinevirtual
get_layer_types() overrideMNIST::MLP< Loss, ActivationFunction, Constraint >inlinevirtual
get_pooling_layers() overrideMNIST::MLP< Loss, ActivationFunction, Constraint >inlinevirtual
get_weights() overrideMNIST::MLP< Loss, ActivationFunction, Constraint >inlinevirtual
learn_rateMNIST::MLP< Loss, ActivationFunction, Constraint >protected
learnrate() const overrideMNIST::MLP< Loss, ActivationFunction, Constraint >inlinevirtual
load_data(std::string path)MNIST::MLP< Loss, ActivationFunction, Constraint >inlineprotected
m_batchsizeMNIST::MLP< Loss, ActivationFunction, Constraint >protected
m_constraintMNIST::MLP< Loss, ActivationFunction, Constraint >protected
m_epochsMNIST::MLP< Loss, ActivationFunction, Constraint >protected
m_filtersMNIST::MLP< Loss, ActivationFunction, Constraint >protected
m_layer_sizesMNIST::MLP< Loss, ActivationFunction, Constraint >protected
m_layer_typesMNIST::MLP< Loss, ActivationFunction, Constraint >protected
m_layersMNIST::MLP< Loss, ActivationFunction, Constraint >protected
m_mnistMNIST::MLP< Loss, ActivationFunction, Constraint >protected
m_mnist_testMNIST::MLP< Loss, ActivationFunction, Constraint >protected
m_poolsMNIST::MLP< Loss, ActivationFunction, Constraint >protected
mat_trans_X_vec(const Matrix< Real > &mat, const std::vector< Real > &vec)MNIST::MLP< Loss, ActivationFunction, Constraint >inlinestatic
mat_X_vec(const Matrix< Real > &mat, const std::vector< Real > &vec)MNIST::MLP< Loss, ActivationFunction, Constraint >inlinestatic
max_weight() const overrideMNIST::MLP< Loss, ActivationFunction, Constraint >inlinevirtual
max_weight_abs() const overrideMNIST::MLP< Loss, ActivationFunction, Constraint >inlinevirtual
min_weight() const overrideMNIST::MLP< Loss, ActivationFunction, Constraint >inlinevirtual
MLP(std::vector< size_t > layer_sizes, size_t epochs=20, size_t batchsize=100, Real learn_rate=0.01)MNIST::MLP< Loss, ActivationFunction, Constraint >inline
MLP(Json &data, size_t epochs=20, size_t batchsize=100, Real learn_rate=0.01, bool random=false, Constraint constraint=Constraint())MNIST::MLP< Loss, ActivationFunction, Constraint >inline
mnist_test_set() overrideMNIST::MLP< Loss, ActivationFunction, Constraint >inlinevirtual
mnist_train_set() overrideMNIST::MLP< Loss, ActivationFunction, Constraint >inlinevirtual
scale_down_images(size_t pooling_size=3) overrideMNIST::MLP< Loss, ActivationFunction, Constraint >inlinevirtual
train(unsigned seed=0) overrideMNIST::MLP< Loss, ActivationFunction, Constraint >inlinevirtual
update_mat(Matrix< Real > &mat, const std::vector< Real > &errors, const std::vector< Real > &pre_output, const size_t sample_num, const Real learn_rate)MNIST::MLP< Loss, ActivationFunction, Constraint >inlinestatic
vec_X_vec_comp(const std::vector< Real > &vec1, const std::vector< Real > &vec2)MNIST::MLP< Loss, ActivationFunction, Constraint >inlinestatic
~MLPBase()MNIST::MLPBaseinlinevirtual