SNABSuite
0.x
Spiking Neural Architecture Benchmark Suite
Main Page
Namespaces
Classes
Files
File List
File Members
•
All
Classes
Namespaces
Files
Functions
Variables
Typedefs
Enumerations
Enumerator
Macros
Pages
plot
dim_labels.py
Go to the documentation of this file.
1
#!/usr/bin/env python
2
# -*- coding: utf-8 -*-
3
4
# SNABSuite -- Spiking Neural Architecture Benchmark Suite
5
# Copyright (C) 2017, Christoph Jenzen
6
#
7
# This program is free software: you can redistribute it and/or modify
8
# it under the terms of the GNU General Public License as published by
9
# the Free Software Foundation, either version 3 of the License, or
10
# (at your option) any later version.
11
#
12
# This program is distributed in the hope that it will be useful,
13
# but WITHOUT ANY WARRANTY; without even the implied warranty of
14
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15
# GNU General Public License for more details.
16
#
17
# You should have received a copy of the GNU General Public License
18
# along with this program. If not, see <http://www.gnu.org/licenses/>
19
20
"""
21
# Labels for all possible sweep dimensions (wip)
22
"""
23
24
DIM_LABELS = {
25
"n_bits"
:
"Memory size $n, m$"
,
26
"n_bits_in"
:
"Input vector length $m$"
,
27
"n_bits_out"
:
"Output vector length $n$"
,
28
"n_ones_in"
:
"Number of ones in the input $c$"
,
29
"n_ones_out"
:
"Number of ones in the input $d$"
,
30
"n_samples"
:
"Number of samples $N$"
,
31
"cm"
:
"Membrane capacitance $C_M$ in nF"
,
32
"e_rev_E"
:
"Excitatory reversal potential $E_E$ in mV"
,
33
"e_rev_I"
:
"Inhibitory reversal potential $E_I$ in mV"
,
34
"v_rest"
:
"Resting potential $E_L$ in mV"
,
35
"v_reset"
:
"Reset potential $E_{\\mathrm{reset}}$ in mV"
,
36
"v_thresh"
:
"Threshold potential $E_{\\mathrm{Th}}$ in mV"
,
37
"g_leak"
:
"Leak conductivity $g_\\mathrm{L}$ in $\\mu\\mathrm{S}$"
,
38
"tau_m"
:
"Membrane time constant $\\tau _m$ in ms"
,
39
"tau_syn_E"
:
"Excitatory time constant $\\tau_\\mathrm{e}$ in ms"
,
40
"tau_syn_I"
:
"Inhibitory time constant $\\tau_\\mathrm{i}$ in ms"
,
41
"multiplicity"
:
"Neuron population size $s$"
,
42
"weight"
:
"Synapse weight $w$ in $\\mu\\mathrm{S}$"
,
43
"topology.sigma_w"
:
"Synapse weight noise $\\sigma_w$ in $\\mu \\mathrm{S}$"
,
44
"burst_size"
:
"Input burst size $s$"
,
45
"time_window"
:
"Time window $T$ in ms"
,
46
"isi"
:
"Burst inter-spike-interval $\Delta t$ in ms"
,
47
"sigma_t"
:
"Spike time noise $\sigma_t$ in ms"
,
48
"sigma_offs"
:
"Spike time offset noise $\sigma_t^{\\mathrm{offs}}$ in ms"
,
49
"Average_frequency"
:
"Average frequency [1/ms]"
,
50
"Average_Frequency"
:
"Average frequency [1/s]"
,
51
"ConnectionsPerInput"
:
"\\#Connections per source neuron / \\#Target neurons"
,
52
"Standard_deviation"
:
"Standard deviation"
,
53
"Average_number_of_spikes"
:
"Average spike count"
,
54
"neurons"
:
"Number of Neurons"
,
55
"#neurons"
:
"Neurons"
,
56
"Average_frequency_of_neurons"
:
"Average frequency in 1/ms"
,
57
"Average_Frequency_of_neurons"
:
"Average frequency in 1/s"
,
58
"Average_deviation_from_refractory_period"
:
"Average deviation in ms"
,
59
"time"
:
"Time in ms"
,
60
"neuron id"
:
"Neuron ID"
,
61
"spikes"
:
"Spikes"
,
62
"input_neurons"
:
"Input Neurons"
,
63
"Minimum #spikes"
:
"Minimal Spike Count"
,
64
"Maximum #spikes"
:
"Maximal Spike Count"
,
65
"#input_neurons"
:
"Input Neurons"
,
66
"#ConnectionsPerInput"
:
"Connections per Input"
,
67
"#ConnectionsPerOutput"
:
"Connections per Output"
,
68
"averages"
:
"Average spike frequency"
,
69
"freq"
:
"Average spike frequency"
,
70
"periods"
:
"Length of Refractory Period"
,
71
"Average_deviation"
:
"Average Spike Count Deviation"
,
72
"Average_freq_deviation"
:
"Average Frequency Deviation"
,
73
"Average_spike_number_deviation"
:
"Average deviation (spikes)"
,
74
"probability"
:
"Connection Probability"
,
75
"neurons_max"
:
"\\#Neurons in Source"
,
76
"neurons_retr"
:
"\\#Neurons in Target"
,
77
"#neurons_retr"
:
"\\#Neurons in Target"
,
78
"Average_deviation"
:
"Average Spike Count Deviation"
79
}
80
81
82
def
get_label
(key):
83
return
DIM_LABELS[key]
if
key
in
DIM_LABELS
else
key
84
85
86
SIMULATOR_LABELS = {
87
"ess"
:
"ESS"
,
88
"nmpm1"
:
"BrainScaleS"
,
89
"slurm.nmpm1"
:
"BrainScaleS"
,
90
"spiNNaker"
:
"SpiNNaker"
,
91
"spinnaker"
:
"SpiNNaker"
,
92
"spinnaker2"
:
"SpiNNaker@0.1ms"
,
93
"spikey"
:
"Spikey"
,
94
"nest"
:
"NEST"
,
95
"pynn"
:
"NEST"
,
96
"pynn.nest"
:
"NEST"
,
97
"genn"
:
"GeNN"
,
98
}
99
100
# Colors for all simulators
101
SIMULATOR_COLORS = {
102
"ess"
:
'#73d216'
,
103
"nmpm1"
:
"#75507b"
,
104
"spiNNaker"
:
"#f57900"
,
105
"spinnaker"
:
"#f57900"
,
106
"spinnaker2"
:
"#000000"
,
107
"spikey"
:
"#cc0000"
,
108
"nest"
:
"#3465a4"
,
109
"pynn"
:
"#3465a4"
,
110
"pynn.nest"
:
"#3465a4"
,
111
"genn"
:
"#000000"
,
112
}
dim_labels.get_label
def get_label(key)
Definition:
dim_labels.py:82
Generated by
1.8.11