SNABSuite  0.x
Spiking Neural Architecture Benchmark Suite
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Pages
dim_labels.py
Go to the documentation of this file.
1 #!/usr/bin/env python
2 # -*- coding: utf-8 -*-
3 
4 # SNABSuite -- Spiking Neural Architecture Benchmark Suite
5 # Copyright (C) 2017, Christoph Jenzen
6 #
7 # This program is free software: you can redistribute it and/or modify
8 # it under the terms of the GNU General Public License as published by
9 # the Free Software Foundation, either version 3 of the License, or
10 # (at your option) any later version.
11 #
12 # This program is distributed in the hope that it will be useful,
13 # but WITHOUT ANY WARRANTY; without even the implied warranty of
14 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 # GNU General Public License for more details.
16 #
17 # You should have received a copy of the GNU General Public License
18 # along with this program. If not, see <http://www.gnu.org/licenses/>
19 
20 """
21 # Labels for all possible sweep dimensions (wip)
22 """
23 
24 DIM_LABELS = {
25  "n_bits": "Memory size $n, m$",
26  "n_bits_in": "Input vector length $m$",
27  "n_bits_out": "Output vector length $n$",
28  "n_ones_in": "Number of ones in the input $c$",
29  "n_ones_out": "Number of ones in the input $d$",
30  "n_samples": "Number of samples $N$",
31  "cm": "Membrane capacitance $C_M$ in nF",
32  "e_rev_E": "Excitatory reversal potential $E_E$ in mV",
33  "e_rev_I": "Inhibitory reversal potential $E_I$ in mV",
34  "v_rest": "Resting potential $E_L$ in mV",
35  "v_reset": "Reset potential $E_{\\mathrm{reset}}$ in mV",
36  "v_thresh": "Threshold potential $E_{\\mathrm{Th}}$ in mV",
37  "g_leak": "Leak conductivity $g_\\mathrm{L}$ in $\\mu\\mathrm{S}$",
38  "tau_m": "Membrane time constant $\\tau _m$ in ms",
39  "tau_syn_E": "Excitatory time constant $\\tau_\\mathrm{e}$ in ms",
40  "tau_syn_I": "Inhibitory time constant $\\tau_\\mathrm{i}$ in ms",
41  "multiplicity": "Neuron population size $s$",
42  "weight": "Synapse weight $w$ in $\\mu\\mathrm{S}$",
43  "topology.sigma_w": "Synapse weight noise $\\sigma_w$ in $\\mu \\mathrm{S}$",
44  "burst_size": "Input burst size $s$",
45  "time_window": "Time window $T$ in ms",
46  "isi": "Burst inter-spike-interval $\Delta t$ in ms",
47  "sigma_t": "Spike time noise $\sigma_t$ in ms",
48  "sigma_offs": "Spike time offset noise $\sigma_t^{\\mathrm{offs}}$ in ms",
49  "Average_frequency": "Average frequency [1/ms]",
50  "Average_Frequency": "Average frequency [1/s]",
51  "ConnectionsPerInput": "\\#Connections per source neuron / \\#Target neurons",
52  "Standard_deviation": "Standard deviation",
53  "Average_number_of_spikes": "Average spike count",
54  "neurons": "Number of Neurons",
55  "#neurons": "Neurons",
56  "Average_frequency_of_neurons": "Average frequency in 1/ms",
57  "Average_Frequency_of_neurons": "Average frequency in 1/s",
58  "Average_deviation_from_refractory_period": "Average deviation in ms",
59  "time" : "Time in ms",
60  "neuron id" : "Neuron ID",
61  "spikes" : "Spikes",
62  "input_neurons" : "Input Neurons",
63  "Minimum #spikes" : "Minimal Spike Count",
64  "Maximum #spikes" : "Maximal Spike Count",
65  "#input_neurons" : "Input Neurons",
66  "#ConnectionsPerInput" : "Connections per Input",
67  "#ConnectionsPerOutput" : "Connections per Output",
68  "averages" : "Average spike frequency",
69  "freq" : "Average spike frequency",
70  "periods" : "Length of Refractory Period",
71  "Average_deviation": "Average Spike Count Deviation",
72  "Average_freq_deviation": "Average Frequency Deviation",
73  "Average_spike_number_deviation" : "Average deviation (spikes)",
74  "probability" : "Connection Probability",
75  "neurons_max" : "\\#Neurons in Source",
76  "neurons_retr" : "\\#Neurons in Target",
77  "#neurons_retr" : "\\#Neurons in Target",
78  "Average_deviation": "Average Spike Count Deviation"
79 }
80 
81 
82 def get_label(key):
83  return DIM_LABELS[key] if key in DIM_LABELS else key
84 
85 
86 SIMULATOR_LABELS = {
87  "ess": "ESS",
88  "nmpm1": "BrainScaleS",
89  "slurm.nmpm1": "BrainScaleS",
90  "spiNNaker": "SpiNNaker",
91  "spinnaker": "SpiNNaker",
92  "spinnaker2": "SpiNNaker@0.1ms",
93  "spikey": "Spikey",
94  "nest": "NEST",
95  "pynn": "NEST",
96  "pynn.nest": "NEST",
97  "genn": "GeNN",
98 }
99 
100 # Colors for all simulators
101 SIMULATOR_COLORS = {
102  "ess": '#73d216',
103  "nmpm1": "#75507b",
104  "spiNNaker": "#f57900",
105  "spinnaker": "#f57900",
106  "spinnaker2": "#000000",
107  "spikey": "#cc0000",
108  "nest": "#3465a4",
109  "pynn": "#3465a4",
110  "pynn.nest": "#3465a4",
111  "genn": "#000000",
112 }
def get_label(key)
Definition: dim_labels.py:82