SNABSuite  0.x
Spiking Neural Architecture Benchmark Suite
Classes | Namespaces
mnist_mlp.hpp File Reference
#include <algorithm>
#include <cmath>
#include <cypress/cypress.hpp>
#include "helper_functions.hpp"

Go to the source code of this file.

Classes

class  MNIST::MSE
 Root Mean Squared Error. More...
 
class  MNIST::CatHinge
 Categorical hinge loss. Use if weights are restricted to be >0. More...
 
class  MNIST::ReLU
 ActivationFunction ReLU: Rectified Linear Unit. More...
 
class  MNIST::NoConstraint
 Constraint for weights in neural network: No constraint. More...
 
class  MNIST::PositiveWeights
 Constraint for weights in neural network: Only weights >0. More...
 
class  MNIST::PositiveLimitedWeights
 
class  MNIST::MLPBase
 Base class for Multi Layer Networks (–> currently Perceptron only). Allows us to use polymorphism with templated class. More...
 
class  MNIST::MLP< Loss, ActivationFunction, Constraint >
 The standard densely connected multilayer Perceptron. Template arguments provide the loss function, the activation function of neurons (experimental) and a possible constraint for the weights. More...
 

Namespaces

 MNIST